Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Am J Hum Genet ; 111(4): 742-760, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479391

RESUMO

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/genética , Mamíferos , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Drosophila
3.
Genet Med ; 25(7): 100838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37057673

RESUMO

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Serina-Treonina Quinases TOR , Humanos , Lactente , Fibroblastos/metabolismo , Doenças Genéticas Inatas/genética , Células HEK293 , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
4.
Genet Med ; 25(1): 135-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399134

RESUMO

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Assuntos
Braquidactilia , Nanismo , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nanismo/genética , Obesidade/genética , Fenótipo , Proteína-Arginina N-Metiltransferases/genética
5.
Genet Med ; 25(1): 37-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322149

RESUMO

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Epilepsia , Hérnia Diafragmática , Gravidez , Feminino , Humanos , Hipotonia Muscular/genética , Epilepsia/genética , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Convulsões/genética , Fenótipo , Estudos de Associação Genética , Síndrome
6.
Elife ; 112022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511780

RESUMO

Collapsin response mediator proteins (CRMPs) are key for brain development and function. Here, we link CRMP1 to a neurodevelopmental disorder. We report heterozygous de novo variants in the CRMP1 gene in three unrelated individuals with muscular hypotonia, intellectual disability, and/or autism spectrum disorder. Based on in silico analysis these variants are predicted to affect the CRMP1 structure. We further analyzed the effect of the variants on the protein structure/levels and cellular processes. We showed that the human CRMP1 variants impact the oligomerization of CRMP1 proteins. Moreover, overexpression of the CRMP1 variants affect neurite outgrowth of murine cortical neurons. While altered CRMP1 levels have been reported in psychiatric diseases, genetic variants in CRMP1 gene have never been linked to human disease. We report for the first-time variants in the CRMP1 gene and emphasize its key role in brain development and function by linking directly to a human neurodevelopmental disease.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Hipotonia Muscular/genética
7.
Nat Commun ; 13(1): 6570, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323681

RESUMO

Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Humanos , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Bases de Dados Genéticas
8.
Nat Commun ; 13(1): 6664, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333305

RESUMO

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.


Assuntos
Proteínas de Ciclo Celular , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microcefalia/genética , Reparo do DNA/genética , Cromossomos/metabolismo , Instabilidade Genômica , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
9.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083290

RESUMO

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Via de Sinalização Wnt/genética , Deficiência Intelectual/genética , Genômica , beta Catenina/genética
10.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833929

RESUMO

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Proteínas Repressoras , Anormalidades Dentárias , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/genética , Deleção Cromossômica , Facies , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Anormalidades Dentárias/diagnóstico , Fatores de Transcrição/genética
11.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583973

RESUMO

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Assuntos
Epilepsia , Deficiência Intelectual , Animais , Criança , Cricetinae , Cricetulus , Epilepsia/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Canais de Potássio KCNQ , Camundongos , Mutação de Sentido Incorreto , Convulsões
12.
Am J Hum Genet ; 109(5): 944-952, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358416

RESUMO

Calcium (Ca2+) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca2+ pumps that participate in the regulation of intracellular free Ca2+. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism, seizures, and distal limb abnormalities. Nine probands harbor missense variants, seven of which were in specific functional domains, and three individuals have nonsense variants. 3D structural protein modeling suggested that the variants have a destabilizing effect on the protein. We performed Ca2+ imaging after introducing all nine missense variants in transfected HEK293 cells and showed that all variants lead to a significant decrease in Ca2+ export capacity compared with the wild-type construct, thus proving their pathogenicity. Furthermore, we observed for the same variant set an incorrect intracellular localization of ATP2B1. The genetic findings and the overlapping phenotype of the probands as well as the functional analyses imply that de novo variants in ATP2B1 lead to a monogenic form of neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
13.
Epilepsia ; 63(4): 974-991, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179230

RESUMO

OBJECTIVE: Epilepsy is common in patients with PIGN diseases due to biallelic variants; however, limited epilepsy phenotyping data have been reported. We describe the epileptology of PIGN encephalopathy. METHODS: We recruited patients with epilepsy due to biallelic PIGN variants and obtained clinical data regarding age at seizure onset/offset and semiology, development, medical history, examination, electroencephalogram, neuroimaging, and treatment. Seizure and epilepsy types were classified. RESULTS: Twenty six patients (13 female) from 26 families were identified, with mean age 7 years (range = 1 month to 21 years; three deceased). Abnormal development at seizure onset was present in 25 of 26. Developmental outcome was most frequently profound (14/26) or severe (11/26). Patients presented with focal motor (12/26), unknown onset motor (5/26), focal impaired awareness (1/26), absence (2/26), myoclonic (2/26), myoclonic-atonic (1/26), and generalized tonic-clonic (2/26) seizures. Twenty of 26 were classified as developmental and epileptic encephalopathy (DEE): 55% (11/20) focal DEE, 30% (6/20) generalized DEE, and 15% (3/20) combined DEE. Six had intellectual disability and epilepsy (ID+E): two generalized and four focal epilepsy. Mean age at seizure onset was 13 months (birth to 10 years), with a lower mean onset in DEE (7 months) compared with ID+E (33 months). Patients with DEE had drug-resistant epilepsy, compared to 4/6 ID+E patients, who were seizure-free. Hyperkinetic movement disorder occurred in 13 of 26 patients. Twenty-seven of 34 variants were novel. Variants were truncating (n = 7), intronic and predicted to affect splicing (n = 7), and missense or inframe indels (n = 20, of which 11 were predicted to affect splicing). Seven variants were recurrent, including p.Leu311Trp in 10 unrelated patients, nine with generalized seizures, accounting for nine of the 11 patients in this cohort with generalized seizures. SIGNIFICANCE: PIGN encephalopathy is a complex autosomal recessive disorder associated with a wide spectrum of epilepsy phenotypes, typically with substantial profound to severe developmental impairment.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Deficiência Intelectual , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Fenótipo , Convulsões/genética
15.
Genet Med ; 23(6): 1125-1136, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742171

RESUMO

PURPOSE: Consanguineous couples are at increased risk of being heterozygous for the same autosomal recessive (AR) disorder(s), with a 25% risk of affected offspring as a consequence. Until recently, comprehensive preconception carrier testing (PCT) for AR disorders was unavailable in routine diagnostics. Here we developed and implemented such a test in routine clinical care. METHODS: We performed exome sequencing (ES) for 100 consanguineous couples. For each couple, rare variants that could give rise to biallelic variants in offspring were selected. These variants were subsequently filtered against a gene panel consisting of ~2,000 genes associated with known AR disorders (OMIM-based). Remaining variants were classified according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, after which only likely pathogenic and pathogenic (class IV/V) variants, present in both partners, were reported. RESULTS: In 28 of 100 tested consanguineous couples (28%), likely pathogenic and pathogenic variants not previously known in the couple or their family were reported conferring 25% risk of affected offspring. CONCLUSION: ES-based PCT provides a powerful diagnostic tool to identify AR disease carrier status in consanguineous couples. Outcomes provided significant reproductive choices for a higher proportion of these couples than previous tests.


Assuntos
Exoma , Família , Consanguinidade , Exoma/genética , Heterozigoto , Sequenciamento do Exoma
17.
Hum Mol Genet ; 29(20): 3388-3401, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33073849

RESUMO

Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein essential for cell polarity, fate and survival. Defects in cell polarity are associated with neurologic disorders including autism and microcephaly. MPP5 is essential for neurogenesis in animal models, but human variants leading to neurologic impairment have not been described. We identified three patients with heterozygous MPP5 de novo variants (DNV) and global developmental delay (GDD) and compared their phenotypes and magnetic resonance imaging (MRI) to ascertain how MPP5 DNV leads to GDD. All three patients with MPP5 DNV experienced GDD with language delay/regression and behavioral changes. MRI ranged from normal to decreased gyral folding and microcephaly. The effects of MPP5 depletion on the developing brain were assessed by creating a heterozygous conditional knock out (het CKO) murine model with central nervous system (CNS)-specific Nestin-Cre drivers. In the het CKO model, Mpp5 depletion led to microcephaly, decreased cerebellar volume and cortical thickness. Het CKO mice had decreased ependymal cells and Mpp5 at the apical surface of cortical ventricular zone compared with wild type. Het CKO mice also failed to maintain progenitor pools essential for neurogenesis. The proportion of cortical cells undergoing apoptotic cell death increased, suggesting that cell death reduces progenitor population and neuron number. Het CKO mice also showed behavioral changes, similar to our patients. To our knowledge, this is the first report to show that variants in MPP5 are associated with GDD, behavioral abnormalities and language regression/delay. Murine modeling shows that neurogenesis is likely altered in these individuals, with cell death and skewed cellular composition playing significant roles.


Assuntos
Deficiências do Desenvolvimento/etiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Mutação , Doenças do Sistema Nervoso/etiologia , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/fisiologia , Adolescente , Adulto , Animais , Criança , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Adulto Jovem
18.
Orphanet J Rare Dis ; 15(1): 294, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076953

RESUMO

BACKGROUND: MAGEL2-associated Schaaf-Yang syndrome (SHFYNG, OMIM #615547, ORPHA: 398069), which was identified in 2013, is a rare disorder caused by truncating variants of the paternal copy of MAGEL2, which is localized in the imprinted region on 15q11.2q13. The phenotype of SHFYNG in childhood partially overlaps with that of the well-established Prader-Willi syndrome (PWS, OMIM #176270). While larger numbers of younger individuals with SHFYNG have been recently published, the phenotype in adulthood is not well established. We recruited 7 adult individuals (aged 18 to 36) with molecularly confirmed SHFYNG and collected data regarding the clinical profile including eating habits, sleep, behavior, personal autonomy, psychiatric abnormalities and other medical conditions, as well as information about the respective phenotypes in childhood. RESULTS: Within our small cohort, we identified a range of common features, such as disturbed sleep, hypoactivity, social withdrawal and anxiety, but also noted considerable differences at the level of personal autonomy and skills. Behavioral problems were frequent, and a majority of individuals displayed weight gain and food-seeking behavior, along with mild intellectual disability or borderline intellectual function. Classical symptoms of SHFYNG in childhood were reported for most individuals. CONCLUSION: Our findings indicate a high variability of the functional abilities and social participation of adults with SHFYNG. A high prevalence of obesity within our cohort was notable, and uncontrollable food intake was a major concern for some caregivers. The phenotypes of PWS and SHFYNG in adulthood might be more difficult to discern than the phenotypes in childhood. Molecular genetic testing for SHFYNG should therefore be considered in adults with the suspected diagnosis of PWS, if testing for PWS has been negative.


Assuntos
Artrogripose , Deficiência Intelectual , Síndrome de Prader-Willi , Adulto , Humanos , Deficiência Intelectual/genética , Fenótipo , Síndrome de Prader-Willi/genética , Proteínas/genética
19.
BMC Neurol ; 20(1): 121, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252670

RESUMO

BACKGROUND: Spinal dysraphism with a hamartomatous growth (appendix) of the spinal cord is better known as herniated spinal cord. There are many arguments in favour of considering it a developmental defect. From this point of view, it is a type of neural tube disorder. Neural tube disorders can be caused by multiple factors, including a genetic factor. A common genetic defect in patients with a spinal dysraphism with a hamartomatous growth of the spinal cord is sought for. CASE PRESENTATION: In two patients with a symptomatic lesion and referred to an academic hospital a genetic analysis was performed after informed consent. Whole-exome analysis was performed. : Whole-exome analysis did not result in identification of a clinically relevant genetic variant. CONCLUSIONS: This the first study to investigate the genetic contribution to spinal dysraphism with a hamartomatous growth (appendix) of the spinal cord. We could not establish a genetic cause for this entity. This conclusion cannot be definitive due to the small sample size. However, the incidental occurrence, the lack of reports of inheritance of this disorder and the absence of contribution to syndromal disorders favours a defect of normal development of the spinal cord.


Assuntos
Hamartoma/genética , Defeitos do Tubo Neural/genética , Medula Espinal/anormalidades , Disrafismo Espinal/genética , Adulto , Apêndice , Feminino , Hamartoma/complicações , Humanos , Masculino , Pessoa de Meia-Idade
20.
Neurol Genet ; 6(3): e418, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32337345

RESUMO

OBJECTIVE: De novo missense mutations in the RHOBTB2 gene have been described as causative for developmental and epileptic encephalopathy. METHODS: The clinical phenotype of this disorder includes early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorder. Three RHOBTB2 patients have been described with acute encephalopathy and febrile epileptic status. All showed severe EEG abnormalities during this episode and abnormal MRI with hemisphere swelling or reduced diffusion in various brain regions. RESULTS: We describe the episode of acute encephalopathy after head trauma in a 5-year-old RHOBTB2 patient. At admission, Glasgow coma scale score was E4M4V1. EEG was severely abnormal showing a noncontinuous pattern with slow activity without epileptic activity indicating severe encephalopathy. A second EEG on day 8 was still severely slowed and showed focal delta activity frontotemporal in both hemispheres. Gradually, he recovered, and on day 11, he had regained his normal reactivity, behavior, and mood. Two months after discharge, EEG showed further decrease in slow activity and increase in normal electroencephalographic activity. After discharge, parents noted that he showed more hyperkinetic movements compared to before this period of encephalopathy. Follow-up MRI showed an increment of hippocampal atrophy. In addition, we summarize the clinical characteristics of a second RHOBTB2 patient with increase of focal periventricular atrophy and development of hemiparesis after epileptic status. CONCLUSIONS: Acute encephalopathy in RHOBTB2 patients can also be triggered by head trauma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...